\sim	4	
()	7	
w		н

(a) A stadium is full of spectators. The peak sound-intensity level at the centre of the stadium is 110 dB.

On another occasion the number of spectators in the stadium is reduced by 60%.

Estimate the peak sound-intensity level at the centre of the stadium.

You should assume that on both occasions:

- the sound intensity produced by each spectator is the same
- the spectators are distributed evenly around the stadium.

	peak sound-intensity level =	dB	(4)
(b)	Describe the changes to a person's hearing that may result from $\mbox{\bf prolonged}$ exposure to sound at 110 $dB.$		
			(2)
		(Total 6 ma	rks)

Q2.		
(a)	Define sound intensity.	
		(1)
(b)	The intensity level, in dB, of a sound is I .	
	What is the intensity level of a sound with double the intensity?	
	Tick √ one box.	
	I + 2	
	I + 3	
	I + 7	
	21	
	3I	
	I^2	
		(1)

(c)	The amplitude of the pressure wave at the oval window of an ear is 20
	times greater than at the tympanic membrane.

force on oval window

Calculate the ratio force on tympanic membrane

area of oval window = $5.9 \times 10^{-6} \, m^2$ area of tympanic membrane = $7.2 \times 10^{-5} \, m^2$

ratio =			
			(2

(Total 4 marks)

Q3.

(a) Sketch an equal loudness curve on the figure below showing the normal response of a healthy ear.

Annotate the **frequency** axis with an appropriate scale.

frequency / Hz

(3)

(b)	Describe the procedure used to gather the data for an equal loudness curve.

(2)

(c) Calculate the intensity of a sound that produces an intensity level of 30 dB.

intensity = $_$ $W m^{-2}$

(2)

(Total 7 marks)